申请这个电路布图设计专有权,代理的老师给了下图的层定义名?谁能解释下? 专利代理老师说:一般是以每一层的材质来命名,比如poly层、metal层、sab层等,不是以每一层的位置来命名的。
2023-09-15 09:39
PCB表面OSP的处理方法PCB化学镍金的基础步骤
2021-04-21 06:12
你好!,我开始使用FX3设备设计一个新的布局。我仔细阅读了FX3的硬件指南,仍然不能理解两件事:1)对于超高速微带线,建议采用11MIL轨迹宽度和8MIL空间。从开发工具包的Fab绘图,我看到有一个奇怪的堆叠产生一个90欧姆差动阻抗(边缘耦合)在这些线与12MIL跟踪和8密耳空间。这一切都很好,但不幸的是,它造成了相当大的19MIL 50欧姆单端痕迹!我有一个相当紧凑的设计,所以我需要合理的5-8密耳50欧姆痕迹的顶部和底部的路由。为什么选择堆栈来提供这些大的跟踪?有没有我不考虑的损失因素?我有一个堆叠,将给予90欧姆边缘耦合差分阻抗与一个6/8 / 6MIL微带。2)B型路由:我决定使用更坚固的全尺寸B型连接器,到目前为止,这是一个相当痛苦的经历。将路由(如附件显示)保持在与连接器相同的一侧是否非常不明智?我知道一个“存根”是由这个创造出来的,但我不知道如何衡量它的效果。是否更好地运行所有这些信号通过一组通孔,如建议(与地面通孔适当间隔)?在我看来,引入层更改比存根创建最糟糕,但我肯定希望听到某人的知情意见。我很想听听专家的意见,谢谢!史提夫M路由选择FX3.JPG135.7 K 以上来自于百度翻译 以下为原文Hello!, I'm starting a new layout of a design using the FX3 device. I've carefully read the Hardware Guidelines for the FX3 and still cannot understand a couple things: 1) There is a recommendation of a ~11mil trace width and a 8mil space for the superspeed microstrip lines. From the development kit's fab drawing, I see that there is a bit of a bizarre stackup which yields a 90 Ohm differential impedance (edge-coupled) on these lines with a 12mil trace and 8 mil space. This is all fine, but unfortunately it causes some fairly large 19mil 50-ohm single ended traces! I have a fairly tight design, so I need reasonable ~5-8mil 50 Ohm traces on the top and bottom layers for routing. Is there a reason why the stackup was chosen to give these large traces? Is there a loss factor that I am not considering? I have a stackup that will give the 90 Ohms edge-coupled differential impedance with a ~6/8/6mil microstrip. 2) B-Type routing: I've decided to use a more rugged full size b-type connector and it is been a fairly painful experience so far. Would it be very unwise to keep the routing (as the attachment shows) on the same side as the connector? I understand that a 'stub' is created from this, but I have no idea on how to gauge the effect. Would it be better to run all of these signals through a set of vias, as recommended (with the ground vias appropriately spaced)? In my mind, it seems that introducing the layer change would be worst than the stub created, but I would definitely like to hear someone's informed opinion. I would definitely like to hear from the experts on this one, thank you! Steve M. Routing FX3.jpg 135.7 K
2019-05-20 13:12
光刻胶也称为光致抗蚀剂,是一种光敏材料,它受到光照后特性会发生改变。光刻胶主要用来将光刻掩膜版上的图形转移到晶圆片上。光刻胶有正胶和负胶之分。正胶经过曝光后,受到光照的部分变得容易溶解,经过显影后被溶解,只留下未受光照的部分形成图形;而负胶却恰恰相反,经过曝光后,受到光照的部分会变得不易溶解,经过显影后,留下光照部分形成图形。
2019-11-07 09:00
我正在使用安捷伦先进设计系统(ADS-2008)中的微带技术设计Ku-Band中的低噪声放大器/功率放大器/滤波器基板材料主要是RO4003C或RO5880。在低于X波段的频率下,模拟和测量结果之间存在紧密的一致性。但是在X-Band及以上,我总是观察到模拟和测量结果之间的频率变化,这浪费了大量宝贵的资源。最有趣的是,在模拟和测量结果中,性能曲线的形状(S11,S21,S22)几乎保持相同。这种转变有时是积极的,有时是消极的。我总是在微波模式下模拟具有最大可能的网格密度和最小可能的弧分辨率的电路。基板定义如下FreeSpace Substrate //// GND //////金属化层和过孔也正确映射。我怀疑对于某些几何形状,衬底的有效介电常数会发生变化,这会引起偏移,但我也认为ADS2008 Momentum模拟器还应根据仿真过程中的几何和频率计算有效介电常数。因此,不应该观察到这种转变。请帮助这方面,我如何改进模拟以避免频率的这种转变。 以上来自于谷歌翻译 以下为原文I amdesigning Low noise amplifiers/power amplifier/filters in Ku-Band using microstrip technology in Agilent Advanced design system (ADS-2008) Substrate material is mostly RO4003C or RO5880. At frequencies below X-Band, there is close coherence between simulation and measured results. But at X-Band and above, I always observe a frequency shift between simulation and measured results and this wastes lot ofprecious resources. the most interesting thing is that shape of performance curves (S11, S21, S22) remains almost same in both simulation and measured results. this shift is sometimes positive and sometimes negative. I always simulate the circuits with maximum possible mesh density and minimum possible arc resolution in Microwave mode. Substrate is defined as follows FreeSpace Substrate ////GND////// Metallization layers and vias are also correctly mapped. I suspect that for certain geometries, effective dielectric constant of substrate varies and this causes the shift but I also think that ADS2008 Momentum simulator should also calculate the effective Dielectric constant depending on the geometry and frequency during simulation. Thus, this shift should not be observed. Please help in this regard, How I can improve simulation to avoid this shift in frequency.
2019-02-13 10:41
现今世界上超大规模集成电路厂(***称之为晶圆厂,为叙述简便,本文以下也采用这种称谓)主要集中分布于美国、日本、西欧、新加坡及***等少数发达国家和地区,其中***地区占有举足轻重的地位。但由于近年来***地区历经地震、金融危机、***更迭等一系列事件影响,使得本来就存在资源匮乏、市场狭小、人心浮动的***岛更加动荡不安,于是乎就引发了一场晶圆厂外迁的风潮。而具有幅员辽阔、资源充足、巨大潜在市场、充沛的人力资源供给等各方面优势的祖国大陆当然顺理成章地成为了其首选的迁往地。所以全国范围内的这股兴建晶圆厂的热潮就是在这种背景下产生的。晶圆厂所生产的产品实际上包括两大部分:晶圆切片(也简称为晶圆)和超大规模集成电路芯片(可简称为芯片)。前者只是一片像镜子一样的光滑圆形薄片,从严格的意义上来讲,并没有什么直接实际应用价值,只不过是供其后芯片生产工序深加工的原材料。而后者才是直接应用在计算机、电子、通讯等许多行业上的最终产品,它可以包括CPU、内存单元和其它各种专业应用芯片。本文有关超大规模集成电路的一些基本概念、主要生产工艺流程及其产业特点等做一个简要介绍。
2019-07-29 06:05
关于LCoS显示屏设计与应用你想知道都在这
2021-06-02 06:29