MOSFET数据手册常见参数解析——EASIGSS/Rds(on)/Coss
2023-06-19 09:53
如今人们比以往任何时候都更依赖电子设备。随着智能手机、平板电脑和笔记本电脑等电子产品的便携化,它们占据了我们日常生活中越来越多的空间和时间。由于能够即时和无缝地接触到世界各地的其他人群和信息,持续、无限和无界的沟通、联系和任务分配已成为生活标配。 这对功率半导体行业有何影响呢?这些便携式产品需要依靠电池供电,因此,能够使用它们的根本前提是有充电器或适配器(取决于额定功率)来给它们充电。而这就是微电子技术的用武之地。在确定了需要充电器/适配器来为我们(智能)设备的电池充电之后,下面的问题是:我们愿意花费多
2020-07-09 14:52
如今人们比以往任何时候都更依赖电子设备。随着智能手机、平板电脑和笔记本电脑等电子产品的便携化,它们占据了我们日常生活中越来越多的空间和时间。由于能够即时和无缝地接触到世界各地的其他人群和信息,持续、无限和无界的沟通、联系和任务分配已成为生活标配。
2020-09-29 09:58
反激式转换器在正常工作情况下,当MOSFET关断时,初级电流(id)在短时间内为 MOSFET的Coss(即Cgd+Cds)充电,当Coss两端的电压Vds超过输入电压及反射的输出电压之和
2018-01-31 16:13
功率MOSFET的输出电容Coss会随着外加电压VDS的变化而变化,表现出非线性的特性,超结结构的高压功率MOSFET采用横向电场的电荷平衡技术
2023-02-16 10:52
NTHL020N120SC1的设计旨在在1200V的阻断电压(VDSS)下提供极低的导通损耗。此外,它被设计为以低内部门极电阻(Rg =1.81Ω)和低输出电容(Coss = 260pF)快速驱动。
2020-06-23 09:48
本文介绍反激式转换器 RCD 缓冲电路的设计指南。当 MOSFET 关断时,由于主变压器的漏电感 (Llk) 与 MOSFET 的输出电容 (COSS) 之间存在谐振,漏极引脚 上会出现高压尖峰。漏
2025-03-04 09:57
MOS管具有三个内在的寄生电容:Cgs、Cgd、Cds。这一点在MOS管的规格书中可以体现(规格书常用Ciss、Coss、Crss这三个参数代替)。MOS管之所以存在米勒效应,以及GS之间要并电阻,其源头都在于这三个寄生电容。
2023-05-08 09:08
音响功放领域的MOS管在不断迭代,近年来都是往高效、高功率密度和低失真的发展趋势。对于音响功放影响其失真的因素会有很多,在MOS管领域就会有跨导(gm)、阈值电压(Vth)、极间电容(Ciss、Coss、Crss)、漏源导通电阻(Rds(on))等参数因素影响。
2025-04-21 14:56
功率MOSFET的输出电容是非常重要的一个参数,读过功率MOSFET数据表的工程师应该注意到:输出电容Coss会随着外加电压VDS的变化而变化,表现出非线性的特性
2023-02-16 10:54