• 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
返回

电子发烧友 电子发烧友

  • 全文搜索
    • 全文搜索
    • 标题搜索
  • 全部时间
    • 全部时间
    • 1小时内
    • 1天内
    • 1周内
    • 1个月内
  • 默认排序
    • 默认排序
    • 按时间排序
  • 全部板块
    • 全部板块
大家还在搜
  • 深度学习存在哪些问题?

    深度学习常用模型有哪些?深度学习常用软件工具及平台有哪些?深度学习存在哪些问题?

    2021-10-14 08:20

  • 基于赛灵思FPGA的卷积神经网络实现设计

    作者:Nagesh Gupta 创始人兼 CEOAuviz Systems Nagesh@auvizsystems.com凭借出色的性能和功耗指标,赛灵思 FPGA 成为设计人员构建卷积神经网络的首选 XE "" XE "" XE "" XE ""。新的软件工具可简化实现工作。人工智能正在经历一场变革,这要得益于机器学习的快速进步。在机器学习领域,人们正对一类名为“深度学习”算法产生浓厚的兴趣,因为这类算法具有出色的大数据集性能。在深度学习中,机器可以在监督或不受监督的方式下从大量数据中学习一项任务。大规模监督式学习已经在图像识别和语音识别等任务中取得巨大成功。 深度学习技术使用大量已知数据找到一组权重和偏差值,以匹配预期结果。这个过程被称为训练,并会产生大型模式。这激励工程师倾向于利用专用硬件(例如 GPU)进行训练和分类。 随着数据量的进一步增加,机器学习将转移到云。大型机器学习模式实现在云端的 CPU 上。尽管 GPU 对深度学习算法而言在性能方面是一种更好的选择,但功耗要求之高使其只能用于高性能计算集群。因此,亟需一种能够加速算法又不会显著增加功耗的处理平台。在这样的背景下,FPGA 似乎是一种理想的选择,其固有特性有助于在低功耗条件下轻松启动众多并行过程。让我们来详细了解一下如何在赛灵思 FPGA 上实现卷积神经网络 (CNN)。CNN 是一类深度神经网络,在处理大规模图像识别任务以及与机器学习类似的其他问题方面已大获成功。在当前案例中,针对在 FPGA 上实现 CNN 做一个可行性研究,看一下 FPGA 是否适用于解决大规模机器学习问题。卷积神经网络是一种深度神经网络 (DNN),工程师最近开始将该技术用于各种识别任务。图像识别、语音识别和自然语言处理是 CNN 比较常见的几大应用。

    2019-06-19 07:24

  • 请问word2vec怎么使用?

    请问word2vec怎么使用?

    2021-09-23 08:14

  • 计算机视觉应用深度学习

    怎样从传统机器学习方法过渡到深度学习?

    2021-10-14 06:51

  • 人工智能后续以什么形式发展?

    从2014年开始,人工智能逐渐成为科技领域最热门的概念,被科技界,企业界和媒体广泛关注。作为一个学术领域,人工智能是在1956年夏季,以麦卡赛、明斯基、罗切斯特和申农等为首的一批有远见卓识的年轻科学家在一起聚会,共同研究和探讨用机器模拟智能的一系列有关问题时首次提出。

    2019-08-12 07:53

  • 如何去使用word2vector呢

    Demo源码文件有几个?如何去使用word2vector呢?

    2021-09-23 09:25

  • 人工智能能否取代人类?

    为什么大家对这类问题如此感兴趣?这可能要追溯到2016年,AI真正进入到大众视野并引爆媒体的标志性事件,也就是AlphaGo战胜围棋的世界冠军-李世石。在之后,我们看到一个又一个AI技术的突破,以及不断被刷新的媒体头条,好像AI取代人类是完全可能而且理所应当的事情。手把手教你设计人工智能芯片及系统(全阶设计教程+AI芯片FPGA实现+开发板)详情链接:http://url.elecfans.com/u/c422a4bd15

    2019-09-11 11:52