在这篇题为《将拟势函数视为随机梯度下降损失函数中的隐式正则项》的论文中,作者提出了一种统一的方法,将拟势作为一种量化关系的桥梁,在SGD隐式正则化与SGD的随机项的协方差结构之间建立了联系。
2019-03-06 09:15
【导读】 AI理论再进一步,破解ChatGPT指日可待? Transformer架构已经横扫了包括自然语言处理、计算机视觉、语音、多模态等多个领域,不过目前只是实验效果非常惊艳,对Transformer工作原理的相关研究仍然十分有限。 其中最大谜团在于,Transformer为什么仅依靠一个「简单的预测损失」就能从梯度训练动态(gradient training dynamics)中涌现出高效的表征? 最近田渊栋博士公布了团队的最新研究成果,以数学严格方式,分析了1层Transformer(一个自注意力层加
2023-06-12 10:11
对于Common Crawl上的语言建模,具有128GPU的同步SGD实现了标准分布式训练的最佳结果,至少是我们尝试过的配置,并且我们无法使用256个GPU来提高训练时间。虽然额外的GPU似乎不能
2018-04-16 11:35
说到优化算法,入门级必从 SGD 学起,老司机则会告诉你更好的还有 AdaGrad / AdaDelta,或者直接无脑用 Adam。可是看看学术界的最新 paper,却发现一众大神还在用着入门级
2018-03-26 11:39
因此,如果你需要一些快速的结果,或者只是想测试一个新的技术,选择自适应优化器。我发现Adam很容易使用,因为它对你选择完美的学习率并不是很敏感。如果您想获得绝对最佳的最终表现,请使用SGD + Momentum,并使用学习率,衰减和动量值来最大化表现。
2019-04-02 15:12
很多机器学习问题是深度为2的子案例,例如,输入层和输出层之间的一个隐含层。通常假设网络的结构、数据分布,等等。比起GD/SGD,可以使用不同算法,例如张量分解、最小化交替以及凸优化等等。
2018-07-12 09:25
随着EDA平台服务趋于网络化,如何通过对资源和流程的有效管理,为用户提供更为方便安全的远程EDA平台调用服务,已成为关键问题。在FPGA开发平台上集成了EDA工具环境,并部署SGD软件。
2019-01-20 09:34
其中 W^ 卷积层的权重,* 是卷积运算。将图2 所示作为一个例子,WS方法不会直接在原始权重上进行优化,而是采用另一个函数 W^=WS(W)来表示原始权重 W^。然后使用 SGD 算法来更新 W。
2019-04-08 14:36
这种降低维度,以退为进的方法,是对规划模块认识上的一个飞跃。通过放弃最优解的追求转而追求较优解,换来系统运算速度、稳定性的极大提高,同时满足无人驾驶系统的整体需求。这一点可以类比机器学习中SGD的思路,放弃对精确梯度方向的寻找,转而寻找近似梯度的方向,从而换来学习速率上的提升。
2018-07-16 11:06
在这里,我们将学习如何解决优化问题。给定函数 f(x),基于 x = a 评估最小化 f(x)。为此,我们需要一个优化器。优化器是一种通过渐变来最小化函数的算法。文献中有许多优化器,如 SGD,Adam 等......这些优化器的速度和准确性各不相同。Tensorflowjs 支持最重要的优化器。
2018-08-01 11:37