前文中,我们介绍了一些传统计算机视觉的算法,包括降噪滤波、二值化、缩放、锐化等,最终我们在FPGA上实现了实时的运动目标跟踪算法。近些年基于神经网络的机器学习已经成熟应用于很多商业、工业领域,包括自动驾驶、自动生产,智能医疗等。
2022-05-16 10:39
的影响,进而得到剪枝操作后模型泛化能力变化的原因。在卷积神经网络模型 lenet5上进行实验,结果表明,剪枝模型泛化能力减弱是因为 Dropout率下调和剪枝操作时参数量的变化。
2021-05-25 14:48
随着深度学习的不断发展,卷积神经网络(CNN)在目标检测与图像分类中受到研究者的广泛关注。CNN从 Lenet5网络发展到深度残差网络,其层数不断增加。基于神经网络中“深度”的含义,在确保感受野相同
2021-05-19 16:11
识别网络LeNet5(图3)为例,提出一种在ZYNQ上加速CNN的工程方法。LeNet5在两层CNN后加入了全连接层和softmax分类器,实现了对10种数字手写体的分类。 系统框架 ZYNQ上
2021-01-15 17:09
2012年一炮走红,深度学习重新燃起了一片热情。从Lenet5第一次使用卷积开始,经历了AlexNet VGG Inception ResNet等各种模型,错误率也一再降低。ResNet-1521 引言当前
2018-06-07 17:26