InfoGAN是生成对抗网络信息理论的扩展,能够以完全非监督的方式得到可分解的特征表示。它可以最大化隐含(latent)变量子集与观测值之间的互信息(mutual information),并且发现了有效优化互信息目标的下界。
2018-07-20 09:59
生成对抗网络由一个生成网络(Generator)与一个判别网络(Discriminator)组成。生成网络从潜在空间(latent space)中随机采样作为输入,其输出结果需要尽量模仿训练集中
2018-06-11 16:04
的潜在扩散模型(Latent Diffusion models, LDMs)。借由这些模型的强大能力,只需要输入一段文字,人人都可化身设计师、插画师,进行精美图片的创作。但是,调用文生图模型的时候
2023-11-09 17:05
码器(Decoder)。编码器负责将输入数据映射到一个低维的潜在空间(latent space),而解码器则负责将这个低维表示映射回原始输入空间,从而实现对输入数据的重构。自编码器的目标是最小化重构误差,即使得解码器的输出尽可能接近原始输入数据。
2024-07-09 11:25