写在前面:本文将对 Nvidia BERT 推理解决方案 Faster Transformer 源码进行深度剖析,详细分析作者的优化意图,并对源码中的加速技巧进行介绍,希望对读者有所帮助。本文源码
2023-09-08 10:20
Faster-LIO是基于FastLIO2开发的。FastLIO2是开源LIO中比较优秀的一个,前端用了增量的kdtree(ikd-tree),后端用了迭代ESKF(IEKF),流程短,计算快
2024-01-12 10:22
在多数深度学习开发者的印象中Faster-RCNN与Mask-RCNN作为早期的RCNN系列网络现在应该是日薄西山,再也没有什么值得留恋的地方,但是你却会发现Pytorch无论哪个版本的torchvision都一直在支持Faster-RCNN与Mask-RCNN模
2023-10-11 16:44
》 , 《fast RCNN算法详解》 。 思想 从RCNN到fast RCNN,再到本文的faster RCNN,目标检测的四个基本步骤(候选区域生成,特征提取,分类,位置精修)终于被 统一到
2017-12-06 02:30
写在前面 :本文将对 Faster Transformer v2.1 版本源码进行解读,重点介绍该版本基于 v1.0 和 v2.0 所做的优化内容,剖析源码作者优化意图。 1 v2.1 版本发布背景
2023-09-19 11:39
》,《fast RCNN算法详解》。 思想 从RCNN到fast RCNN,再到本文的faster RCNN,目标检测的四个基本步骤(候选区域生成,特征提取,分类,位置精修)终于被统
2021-01-13 16:25
Mask R-CNN是承继于Faster R-CNN,Mask R-CNN只是在Faster R-CNN上面增加了一个Mask Prediction Branch(Mask预测分支),并且在ROI
2019-04-04 16:32
输入的图片以长×宽×高的张量形式表征,之后会被馈送入预训练好的卷积神经网络,在中间层得到特征图。使用该特征图作为特征提取器并用于下一流程。
2021-03-20 10:37
在本篇文章中,公司的研究人员介绍了他们在研究过程中所使用的先进目标检测工具Faster R-CNN,包括它的构造及实现原理。
2018-01-27 11:49
提到RPN网络,就不能不说anchors。所谓anchors,实际上就是一组由rpn/generate_anchors.py生成的矩形。直接运行作者demo中的generate_anchors.py可以得到以下输出。
2023-08-07 10:28