卷积神经网络(Convolutional Neural Networks, CNN)作为深度学习领域的核心成员,不仅在学术界引起了广泛关注,更在工业界尤其是计算机视觉领域展现出了巨大的应用价值。关于
2024-07-05 17:37
基于FPGA的通用CNN加速器整体框架如下,通过Caffe/Tensorflow/Mxnet等框架训练出来的CNN模型,通过编译器的一系列优化生成模型对应的指令;同时,图片数据和模型权重数据按照优化规则进行预处理以及压缩后通过PCIe下发到FPGA加速器中
2017-10-27 14:09
它的概念很简单:对于每个目标对象,Faster R-CNN都有两个输出,一是分类标签,二是候选窗口;为了分割目标像素,我们可以在前两个输出的基础上增加第三个输出——指示对象在窗口中像素位置的二进制
2018-07-20 08:53
Mask R-CNN是承继于Faster R-CNN,Mask R-CNN只是在Faster R-CNN上面增加了一个Mask Prediction Branch(Ma
2019-04-04 16:32
在深度学习的广阔领域中,卷积神经网络(CNN)和循环神经网络(RNN)是两种极为重要且各具特色的神经网络模型。它们各自在图像处理、自然语言处理等领域展现出卓越的性能。本文将从概念、原理、应用场景及代码示例等方面详细探讨CNN与RNN的关系,旨在深入理解这两种网络模
2024-07-08 16:56
它用TensorFlow.js加载了一个10层的预训练模型,相当于在你的浏览器上跑一个CNN模型,只需要打开电脑,就能了解CNN究竟是怎么回事。
2023-06-28 14:47
CNN(卷积神经网络)是一种深度学习模型,广泛应用于图像识别、自然语言处理等领域。以下是一些常用的CNN模型: LeNet-5:LeNet-5是最早的卷积神经网络之一,由Yann LeCun等人于
2024-07-11 14:58
为了及时掌握电力负荷的变动信息,就需要对电力负荷进行准确预测。鉴于此,探究出一种CNN和LSTM的组合模型来预测一日到一周的电力短期负荷波动情况。CNN模型负责从输入信息中提取特征,LSTM模型利用
2023-11-09 14:13
卷积神经网络 (CNN) 由各种类型的层组成,这些层协同工作以从输入数据中学习分层表示。每个层在整体架构中都发挥着独特的作用。
2024-04-06 05:51
全连接层“忽视”了数据的形状,3维数据被拉平为1维数据;形状因含有重要的空间信息:①空间临近的像素为相似的值,相距较远的像素没什么关系;②RBG的各个通道之间分别有密切的关联性等;③3维形状中可能隐藏有值得提取的本质模式。
2020-08-28 09:44