做图片实验时,按要求做了,在根目录下建了PICTURE文件夹,又放了些图片,把原子哥的代码烧进去了,然后一直显示图片文件夹未找到!我用的是512MTF卡,前面做汉子显示的都有用,搞不懂为什么,求高人指教
2020-07-17 08:01
如图所示,该设备为VR晶元图像MTF检测设备,左边是光源(图像信号源),中间是VR镜片,右边是成像相机(可以理解为人眼),厂家要求三个物体的轴线在同一轴线上精度±5um,请问半导体设备行业的各位
2023-05-25 14:38
如何利用准则实现校准图像质量评测?
2021-06-02 06:25
中国,2018年11月12日,全球领先的高性能传感器解决方案供应商艾迈斯半导体(ams AG,瑞士股票交易所股票代码:AMS)宣布推出新产品,该产品属于备受赞誉的NanEye系列,以业内成功用于内窥镜的原始微型图像传感器模块NanEye 2D为基础。今日预先发布的NanEyeM和NanEyeXS将助力实现用于微创手术的高性能一次性内窥镜的生产。
2020-08-10 06:47
作者:Teledyne e2v 公司, Pierre Fereyre,Gareth PowellI. 引言早于上世纪九十年代初,有意见认为电荷耦合器件(Charge Coupled Device,CCD) 日渐式微,最终将成为“科技恐龙”[1] 。如果用索尼公司(Sony) 2015年的发布来看待,这个预言好像也有点道理:当时索尼公司正式发布终止量产CCD 时间表,并开始接收最后订单。虽然多年前业界已预计这是迟早出现的举措,但是索尼这一发布仍然震惊了专业成像社群[2]。值得一提的是很多工业或专业应用(就是CMOS 图像传感器 (CIS) 的重点市场)到现在仍然基于CCD传感器技术。到底CCD有什么特点优于CIS,使其更具吸引力呢?在发展初期,CCD和CIS两种技术是共存的;后来CCD被视为能够满足严格图像质量要求的高阶技术,而同时期的CMOS技术仍然未成熟并受制于其固有噪声和像素复杂性等问题。在这一时期,图像技术仍然以模拟结构为主,而集成图像处理功能(系统级芯片SOC) 这一意念还没有被认真考量。基于摩尔定律,技术节点的缩小使得SOC技术从2000年起快速扩展并更具竞争力。现在CIS继续致力改进光电性能,在很多方面都显得比CCD优胜。如果利用文首提到的“进化论”譬喻,其实可以把CIS视作抵过多次自然灾害仍然存活的哺乳类动物,而这个进化历史更是跨越6500万年的史诗式故事!
2019-07-22 06:33
I. 引言早于上世纪九十年代初,有意见认为电荷耦合器件(Charge Coupled Device,CCD) 日渐式微,最终将成为“科技恐龙”[1] 。如果用索尼公司(Sony) 2015年的发布来看待,这个预言好像也有点道理:当时索尼公司正式发布终止量产CCD 时间表,并开始接收最后订单。虽然多年前业界已预计这是迟早出现的举措,但是索尼这一发布仍然震惊了专业成像社群[2]。值得一提的是很多工业或专业应用(就是CMOS 图像传感器 (CIS) 的重点市场)到现在仍然基于CCD传感器技术。到底CCD有什么特点优于CIS,使其更具吸引力呢?在发展初期,CCD和CIS两种技术是共存的;后来CCD被视为能够满足严格图像质量要求的高阶技术,而同时期的CMOS技术仍然未成熟并受制于其固有噪声和像素复杂性等问题。在这一时期,图像技术仍然以模拟结构为主,而集成图像处理功能(系统级芯片SOC) 这一意念还没有被认真考量。基于摩尔定律,技术节点的缩小使得SOC技术从2000年起快速扩展并更具竞争力。现在CIS继续致力改进光电性能,在很多方面都显得比CCD优胜。如果利用文首提到的“进化论”譬喻,其实可以把CIS视作抵过多次自然灾害仍然存活的哺乳类动物,而这个进化历史更是跨越6500万年的史诗式故事!
2020-08-20 07:36
CCD (Charge Coupled Device) ,即电荷耦合器件,是一种金属-氧化物-半导体结构的新型器件,其基本结构是一种密排的MOS电容器,能够存储由入射光在CCD像敏单元激发出的光信息电荷,并能在适当相序的时钟脉冲驱动下,把存储的电荷以电荷包的形式定向传输转移,实现自扫描,完成从光信号到电信号的转换。这种电信号通常是符合电视标准的视频信号,可在电视屏幕上复原成物体的可见光像,也可以将信号存储在磁带机内,或输入计算机,进行图像增强、识别、存储等处理。因此,CCD器件是一种理想的摄像器件。
2020-04-24 07:46
高科技处理工艺成功提高量子效率从而实现更好图像质量,长距离图像捕获,减少光源功耗需求。此项技术成功使用新型硅半导体架构和工艺解决了目前图像传感器近红外检测领域面临的挑战。
2020-08-19 06:39
固体摄像器件有什么特点?微光像增强器与CCD耦合方式有哪几种?
2021-06-07 06:55
■ 恩智浦半导体 K. Werner,S. Theeuwen,J. de Boet,V. Bloem,W. Sneijers高压LDMOS是高达3.8GHz的国防和航空电子设备RF功率应用的最佳技术选择。该技术将高功率密度、高强度与高于双级设备的增益和效率相结合。此外,因为基于高容量的Si制造流程,高压LDMOS的可靠性众所周知且已经过市场验证。LDMOS的固有特性使其可承受+5dB的过驱动,且无故障风险,灵活性的提升有助于实现不同的脉冲格式并防止热失控,从而使整体系统设计比既有的双极技术更简单。
2019-07-05 07:01