• 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
返回

电子发烧友 电子发烧友

  • 全文搜索
    • 全文搜索
    • 标题搜索
  • 全部时间
    • 全部时间
    • 1小时内
    • 1天内
    • 1周内
    • 1个月内
  • 默认排序
    • 默认排序
    • 按时间排序
大家还在搜
  • 梯度提升方法(Gradient Boosting)算法案例

    提升树利用加法模型与前向分步算法实现学习的优化过程,当损失函数为平方损失和指数损失函数时,每一步优化都较为简单。

    2019-09-23 08:52

  • 在几个AWS实例上运行的XGBoost和LightGBM的性能比较

    XGBoost(eXtreme Gradient Boosting)是一个在Gradient Boosting Decision Tree(GBDT)框架下的开源机器学习库(https://github.com/dmlc/xgboost)。

    2022-10-24 10:24

  • HarmonyOS-CanvasGradient对象练习

    $refs.canvas; const ctx =el.getContext('2d'); const gradient = ctx.createLinearGradient(0,0,100,0

    2022-03-23 10:36

  • 如何从训练集中生成候选prompt 三种生成候选prompt的方式

    这个“gradient”怎么得到的了呢,这是个啥玩意,怎么还有梯度?注意,注意。人家是带引号的!比喻成梯度。这玩意有什么用呢。 文章指出给定一批error samples(当前prompt无法

    2024-01-12 11:29

  • GBDT算法原理以及实例理解

    GBDT 的全称是 Gradient Boosting Decision Tree,梯度提升树,在传统机器学习算法中,GBDT算的上TOP3的算法。

    2019-04-28 16:47

  • 机器学习:随机梯度下降和批量梯度下降算法介绍

    随机梯度下降(Stochastic gradient descent) 批量梯度下降(Batch gradient descent) 梯度下降(GD)是最小化风险函数、损失函数的一种常用方法,随机

    2017-11-28 04:00

  • 各种梯度下降法是如何工作的

    导读一图胜千言,什么?还是动画,那就更棒啦!本文用了大量的资源来解释各种梯度下降法(gradient descents),想给大家直观地介绍一下这些方法是如何工作的。

    2022-08-17 11:50

  • 讲解CNN+RNN的各种组合方式,以及CNN和RNN的对比

    运用迁移学习,CNN特征,语句特征应用已有模型2. 最终的输出模型是LSTM,训练过程的参数设定:梯度上限(gradient clipping), 学习率调整(adaptivelearning)3. 训练时间很长。

    2018-09-13 15:22

  • 常用的三种机器学习优化算法介绍和比较

    其中,gradient(x_n)是函数位于x_n点时的梯度向量,hessian_matrix是一个尺寸为 nxn 的黑塞矩阵(hessian matrix),其值是函数位于x_n的二阶导数。我们都知道,矩阵转换的算法复杂度是非常高的(O(n³)),因此牛顿法在这种情形下并不常用。

    2019-04-29 10:47

  • “深度学习”虽然深奥,本质却很简单

    但就像爱情,“深度学习”虽然深奥,本质却很简单。无论是图像识别还是语义分析,机器的“学习”能力都来源于同一个算法 — 梯度下降法 (Gradient Descent)。要理解这个算法,你所需要的仅仅是高中数学。在读完这篇文章后,你看待 AI 的眼光会被永远改变。

    2018-12-27 15:15