• 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
返回

电子发烧友 电子发烧友

  • 全文搜索
    • 全文搜索
    • 标题搜索
  • 全部时间
    • 全部时间
    • 1小时内
    • 1天内
    • 1周内
    • 1个月内
  • 默认排序
    • 默认排序
    • 按时间排序
大家还在搜
  • Faster Transformer v1.0源码详解

    写在前面:本文将对 Nvidia BERT 推理解决方案 Faster Transformer 源码进行深度剖析,详细分析作者的优化意图,并对源码中的加速技巧进行介绍,希望对读者有所帮助。本文源码

    2023-09-08 10:20

  • 激光SLAM:Faster-Lio算法编译与测试

    Faster-LIO是基于FastLIO2开发的。FastLIO2是开源LIO中比较优秀的一个,前端用了增量的kdtree(ikd-tree),后端用了迭代ESKF(IEKF),流程短,计算快

    2024-01-12 10:22

  • 都2023年了,Faster-RCNN还能用吗?

    在多数深度学习开发者的印象中Faster-RCNN与Mask-RCNN作为早期的RCNN系列网络现在应该是日薄西山,再也没有什么值得留恋的地方,但是你却会发现Pytorch无论哪个版本的torchvision都一直在支持Faster-RCNN与Mask-RCNN模

    2023-10-11 16:44

  • [目标检测]Faster RCNN算法详解

    》 , 《fast RCNN算法详解》 。 思想 从RCNN到fast RCNN,再到本文的faster RCNN,目标检测的四个基本步骤(候选区域生成,特征提取,分类,位置精修)终于被 统一到

    2017-12-06 02:30

  • Faster Transformer v2.1版本源码解读

    写在前面 :本文将对 Faster Transformer v2.1 版本源码进行解读,重点介绍该版本基于 v1.0 和 v2.0 所做的优化内容,剖析源码作者优化意图。 1 v2.1 版本发布背景

    2023-09-19 11:39

  • 目标检测:Faster RCNN算法详解

    》,《fast RCNN算法详解》。 思想 从RCNN到fast RCNN,再到本文的faster RCNN,目标检测的四个基本步骤(候选区域生成,特征提取,分类,位置精修)终于被统

    2021-01-13 16:25

  • 手把手教你操作Faster R-CNN和Mask R-CNN

    Mask R-CNN是承继于Faster R-CNN,Mask R-CNN只是在Faster R-CNN上面增加了一个Mask Prediction Branch(Mask预测分支),并且在ROI

    2019-04-04 16:32

  • 完整的Faster R-CNN框架

    输入的图片以长×宽×高的张量形式表征,之后会被馈送入预训练好的卷积神经网络,在中间层得到特征图。使用该特征图作为特征提取器并用于下一流程。

    2021-03-20 10:37

  • 介绍目标检测工具Faster R-CNN,包括它的构造及实现原理

    在本篇文章中,公司的研究人员介绍了他们在研究过程中所使用的先进目标检测工具Faster R-CNN,包括它的构造及实现原理。

    2018-01-27 11:49

  • 你认为Grid R-CNN会成为Faster R-CNN那样的传世经典吗?

    训练时,ROI特征(14*14大小)通过8个3*3空洞卷积,再通过两个反卷积把尺寸扩大(56*56),再通过一个卷积生成与网格点相关的 heatmaps(9 个点就是 9 张图,后文实验也使用了4个点的情况)。监督信息是每一个点所处位置的交叉十字形状的5个点的位置。最后再接sigmoid函数,在heapmaps上得到概率图。

    2018-12-25 10:42