本论文的研究视角是当前比较热门的两个问题:网格技术和数据挖掘技术。将网格计算和数据挖掘技术结合起来,开发基于网格的数据系统,借鉴传统聚类分析算法CLUQ和K_平均值
2014-02-13 15:21
数据挖掘主要分为三类:分类算法、聚类算法和相关规则,基本涵盖了当前商业市场对算法的所有需求。这三类包含了许多经典算法。市
2023-09-14 15:56
Apriori算法是一种挖掘关联规则的频繁项集算法,其核心思想是通过候选集生成和情节的向下封闭检测两个阶段来挖掘频繁项集。而且算
2018-02-04 09:30
关联分析是一类非常有用的数据挖掘方法,能从数据中挖掘出潜在的关联关系。Apriori算法是一种最有影响的挖掘布尔关联规则
2018-02-04 09:37
本文详细介绍了关于关联规则挖掘——Apriori算法的基本原理以及改进。
2018-02-02 16:46
决策树(decision tree)算法基于特征属性进行分类,其主要的优点:模型具有可读性,计算量小,分类速度快。决策树算法包括了由Quinlan提出的ID3与C4.5,Breiman等提出的CART。其中,C4.5是基于ID3的,对分裂属性的目标函数做出了改进。
2018-07-21 10:13
极化码的译码算法研究近年来发展迅速,其中成为研究热点的连续删除(Successive Cancellation,SC)译码算法的基本思想是通过对信息位的比特似然概率值的
2019-01-06 11:19
Web(World Wide Web,万维网)是一种基于超文本和HTTP的、全球性的、动态交互的、跨平台的分布式图形信息系统。Web的发展已从1.0发展到3.0
2023-02-14 14:51
数据挖掘与传统意义上的统计学不同。统计学推断是假设驱动的,即形成假设并在数据基础上验证他;数据挖掘是数据驱动的,即自动地从数据中提取模式和假设。数据挖掘的目标是提取可以容易转换成逻辑规则或可视化表示的定性模型,与传统
2017-12-31 12:19
数据挖掘工程师多是通过对海量数据进行挖掘,寻找数据的存在模式,从而通过数据挖掘来解决具体问题。其更多是针对某一个具体的问题,是以解决具体问题为导向的。
2017-12-31 12:41