本文用简洁易懂的语言,讲述了自然语言处理(NLP)的前世今生。从什么是NLP到为什么要学习NLP,再到如何利用机器学习进行NLP,值得一读。这是该系列的第一部分,介绍了
2018-06-10 10:26
方向是自然语言处理的同学们有福啦,为了跟踪自然语言处理(NLP)的进展,有大量仁人志士在 Github 上维护了一个名为 NLP-Progress 的库。它记录了几乎所有NLP任务的 baseline 和 标准数据集
2018-11-17 09:21
自然语言处理(Natural Language Processing, NLP)是人工智能领域中的一个重要分支,它专注于构建能够理解和生成人类语言的计算机系统。NLP的目标是使计算机能够像人类一样
2024-07-02 18:16
这两个问题都很棘手,显然,为期一天的研讨会肯定讨论不出什么结果。但是在会议现场,一些有远见卓识的NLP研究人员还是探讨了不少方法和想法,其中有一些尤其值得关注。在下文中,我们会介绍它们中的三个主题:巧妙地使用更多归纳偏置;努力构建有“常识”的NLP模型;使用没见过
2018-08-27 09:47
该项目是对基于深度学习的自然语言处理(NLP)的概述,包括用来解决不同 NLP 任务和应用的深度学习模型(如循环神经网络、卷积神经网络和强化学习)的理论介绍和实现细节,以及对 NLP 任务(机器翻译、问答和对话系统)
2019-03-01 09:13
许多研究证明,学术论文表达的nativeness会影响其被接受发表的可能性[1, 2]。先前的研究也揭示了非英语母语的作者在国际期刊发表论文时所经历的压力和焦虑。我们通过对自然语言处理(NLP)论文
2024-01-03 11:00
这些改进,加上这些方法的广泛可用性和易集成性,使人们想起了导致计算机视觉中预训练字嵌入和ImageNet预训练成功的因素,并表明这些方法很可能成为NLP中的一种常用工具以及一个重要的研究方向。
2019-06-23 10:11
在自然语言处理(NLP)领域,循环神经网络(RNN)与卷积神经网络(CNN)是两种极为重要且广泛应用的网络结构。它们各自具有独特的优势,适用于处理不同类型的NLP任务。本文旨在深入探讨RNN与CNN
2024-07-03 15:59
本文针对NLP项目给出了4种常见的解题思路,其中包含1种基于机器学习的思路和3种基于深度学习的思路。
2020-09-24 10:33
在人工智能的广阔领域中,自然语言处理(NLP)技术作为连接人类语言与机器智能的桥梁,正逐渐渗透到我们日常生活的方方面面,其中机器人技术便是一个尤为突出的应用领域。NLP技术不仅赋予了机器人理解
2024-07-04 16:04