以半周期工作过程为例分析全桥LLC电路基本工作原理(fs<fr)。
2023-03-21 09:36
当LLC电路在输出低压时,需要提高工作频率,在现在的技术下,功率管的开关最高频率是受到限制的,我们一般无法让输出电压全范围都工作在PFM态,特别是在数字电路控制中,由于DSP工作频率和资源的限制
2023-03-21 09:35
半桥电路上下桥臂的死区时间定为190nS,这个时间和LLC电路功率管的ZVS工作状态,功率管驱动的可靠性密切相关,同时也影响谐振电流大小和模块整机效率 。对于LLC
2023-03-23 09:35
LLC电路的ZVS零电压开通十分重要,如果能够保证ZVS,则无论是开关管的损耗,还是开关管的DS电压应力,都能够得到比较好的效果。全球30A的开发过程证明,MOSFET的DS电压应力较高的情况都是出现了硬开通。
2023-03-20 11:30
与传统PWM(脉宽调节)变换器不同,LLC是一种通过控制开关频率(频率调节)来实现输出电压恒定的谐振电路。它的优点是:实现原边两个主MOS开关的零电压开通(ZVS)和副边整流二极管的零电流关断(ZCS),通过软开关技术,可以降低电源的开关损耗,提高功率变换器的效率
2022-08-22 10:02
以下图为例,图中Q2本来在t2时刻给出驱动信号并实际导通,因为正好t2时刻谐振电流正向流过Q2。但观察到阴影部分的占空比,若Q2在t1~t2时间段内任意时刻导通,得到的谐振电流波形均和在t2时刻相同,都是Q2的体二极管在续流。也就是说,Q2在t1到t2内任意时刻给出驱动信号,传递到副边的能量均相同,得到的输出电压也相同。
2023-03-21 09:25
从电路拓扑上看,半桥电路和全桥电路并没有本质上的区别。都是两对桥臂轮流开通和关断,完成能量由变压器原边向副边的传递。两个上下位置的开关管都需要保持一定的死区以确保不会直通。
2023-03-20 11:26
有限双极性控制的全桥电路如图1所示,其中,超前臂MOS管Q1、Q3的驱动信号脉宽可调(PWM控制);滞后臂MOS管Q2、Q4的驱动信号脉宽不可调,为固定50%占空比。C1~C4分别为Q1~Q4的外并
2023-03-28 11:41
理论上改变频率便可以改变输出电压增益,但是频率不能无限制的增加,一是频率增加,开关器件损耗也增加,另外频率增加,增益容易出现非线性。所以,在低压输出时,我们采用了PWM方式,通过降低占空比的方式来控制流到输出端的能量。
2023-03-22 11:15
在调宽状态当占空比较小的时候,由图 2可知调宽桥臂MOS管Sa和Sb的驱动信号有很长一段时间处于低电平,谐振电流只能流过MOS管的体二极管。一旦谐振电流衰减到0,体二极管就进入反向恢复状态,漏源电压Vds上升(在占空比较小的情况下,Vds可上升到PFC母线电压),此MOS管失去0电压开通条件,见下图的异常波形。
2023-03-30 14:40