什么是小样本学习?它与弱监督学习等问题有何差异?其核心问题是什么?来自港科大和第四范式的这篇综述论文提供了解答。 数据是机器学习领域的重要资源,在数据缺少的情况下如何训练模型呢?小样本学习是其中一个
2023-06-14 09:59
由于在训练过程中没有足够的标记图像用于所有类,这些模型在现实环境中可能不太有用。并且我们希望的模型能够识别它在训练期间没有见到过的类,因为几乎不可能在所有潜在对象的图像上进行训练。我们将从几个样本中学习的问题被称为“少样本学习 Few-Shot learning”。
2022-11-01 14:21
之前的工作(Monaikul 等人,2021)通过对新实体类添加输出层(AddNER)以及对输出层进行扩展(ExtandNER)两种知识蒸馏的方式解决。但是这种方式需要大量的数据,这在实际问题中不太现实。因此本文遵循了一个更加实际的设置:
2022-09-01 17:10
早期的产品缺陷模式识别主要是通过机器学习方法进行的,如支持向量机、反向传播网络等。这些方法与用肉眼直接对产品缺陷进行识别相比,大大降低了工作量。但是这些早期方法存在以下不足:识别准确率低且需要大量的标签数据对模型进行训练。
2022-03-15 13:49
随机采样的样本大小很重要,也不能过小。需要足够有代表性,即小样本依然可以代表总体的数据分布。如果最终需要划分很多个簇,那么要非常小心,因为小样本可能无法体现体量很小的簇。
2019-04-01 17:19
生成方法对于长实体来说更加困难。但是随着UIE的出现,中文小样本NER 的效果得到了突破。
2022-08-19 16:14
当你写了一个处理数据的软件,它可能在小样本文件上运行地很好,但一旦加载大量真实数据后,这个软件就会崩溃。
2019-12-15 12:20
小样本 NER 需要从很少的实例和外部资源中获取有效信息。本文提出了一个自描述机制,可以通过使用全局概念集(universal concept set)描述实体类型(types)和提及(mentions)来有效利用实例和外部资源的知识。
2022-08-15 09:42
的情况下实现高精度的检测呢?目前有两种方法,一种是小样本学习,另一种是用GAN。本文将介绍一种GAN用于无缺陷样本产品表面缺陷检测。
2023-06-26 09:49
剪枝确定部分样本的聚类,优化了初始监督学习样本分类不合理的地方;第三,由于只是针对部分小样本可以降低总的聚类时间复杂度。
2018-02-12 16:27