怎样通俗易懂地解释贝叶斯网络和它的应用?详情请看下文。贝叶
2018-02-02 16:09
长久以来,人们对一件事情发生或不发生的概率,只有固定的0和1,即要么发生,要么不发生,从来不会去考虑某件事情发生的概率有多大,不发生的概率又是多大。而且概率虽然未知,但最起码是一个确定的值。比如如果问那时的人们一个问题:“有一个袋子,里面装着若干个白球和黑球,请问从袋子中取得白球的概率是多少?”他们会想都不用想,会立马告诉你,取出白球的概率就是1/2,要么取到白球,要么取不到白球,即θ只能有一个值,而且不论你取了多少次,取得白球的概率θ始终都是1/2,即不随观察结果X 的变化而变化。
2019-08-19 15:06
从技术上讲,相关性指的是两个变量之间的线性关系,而关联性则指的是两个(或更多)变量之间的任何关系。而因果关系则意味着一个变量(通常称为预测变量或自变量)导致另一个变量(通常称为结果变量或因变量)。
2023-10-16 15:31
为了大家可以对贝叶斯算法有更多的了解,为大家整理过一篇关于贝叶斯算法的文
2018-07-16 17:15
前言 大家经常看到的贝叶斯公式(Bayes)是写成如下图的形式,通常以P(A|B),P(B|A)的形式表示,虽然数学上看着简单,那到底A,B是什么意思,应该怎么去理解呢,然后怎么运用于实际情况呢
2018-02-02 14:13
学习过概率的人一定知道贝叶斯定理,在信息领域内有着无与伦比的地位。贝叶斯算法是基于贝叶斯定理的一类算法,主要用来解决分类和回归问题。人工智能之机器学习中最为广泛的两种分类模型是1)决策树模型(Decision Tre
2018-05-29 09:01
本文介绍机器学习中一种基于概率的常见的分类方法,朴素贝叶斯,之前介绍的KNN, decision tree 等方法是一种 hard decision,因为这些分类器的输出只有0 或者 1,朴素
2018-02-03 14:37
贝叶斯算法描述及实现根据朴素贝叶斯公式,每个测试样例属于某个类别的概率
2018-02-02 15:54
朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法,是经典的机器学习算法之一,处理很多问题时直接又高效,因此在很多领域有着广泛的应用,如垃圾邮件过滤、文本分类等。也是学习研究自然语言处理问题的一个很好的切入口。
2018-07-01 08:37
在众多机器学习分类算法中,本篇我们提到的朴素贝叶斯模型,和其他绝大多数分类算法都不同,也是很重要的模型之一。
2023-01-16 10:11