• 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
返回

电子发烧友 电子发烧友

  • 全文搜索
    • 全文搜索
    • 标题搜索
  • 全部时间
    • 全部时间
    • 1小时内
    • 1天内
    • 1周内
    • 1个月内
  • 默认排序
    • 默认排序
    • 按时间排序
大家还在搜
  • RNN存在的问题及其改进方法,并介绍更多复杂的RNN变体

    梯度爆炸/消失不仅仅是RNN存在的问题。由于链式法则和非线性激活函数,所有神经网络(包括前向和卷积神经网络),尤其是深度神经网络,都会出现梯度

    2019-05-05 16:05

  • 基于numpy实现合成梯度

    ,我们可以假装“真梯度”来自某个神秘的数据集,以此训练合成梯度网络……所以我们像训练平常的网络一样训练。酷!

    2018-05-14 17:32

  • RNN基础知识介绍 为什么需要RNN

    将神经网络模型训练好之后,在输入层给定一个x,通过网络之后就能够在输出层得到特定的y,那么既然有了这么强大的模型,为什么还需要RNN(循环神经网络)呢?

    2018-05-05 10:51

  • 讲解CNN+RNN的各种组合方式,以及CNN和RNN的对比

    运用迁移学习,CNN特征,语句特征应用已有模型2. 最终的输出模型是LSTM,训练过程的参数设定:梯度上限(gradient clipping), 学习率调整(adaptivelearning)3. 训练时间很长。

    2018-09-13 15:22

  • 梯度爆炸问题的介绍和如何解决爆炸问题详细概述

    最近在做一个文本检测的项目,在训练的过程中遇到了很严重的梯度爆炸情况,今天就来谈谈梯度爆炸怎么解决。

    2018-04-30 19:15

  • 精选 25 个 RNN 问题

    ,非常适合RNN。与其他神经网络不同,RNN具有内部存储器,允许它们保留来自先前输入的信息,并根据整个序列的上下文做出预测或决策。在本文中,我们将探讨RNN的架构、它

    2023-12-15 08:28 颖脉Imgtec 企业号

  • 梯度下降算法及其变种:批量梯度下降,小批量梯度下降和随机梯度下降

    现在我们来讨论梯度下降算法的三个变种,它们之间的主要区别在于每个学习步骤中计算梯度时使用的数据量,是对每个参数更新(学习步骤)时的梯度准确性与时间复杂度的折衷考虑。

    2018-05-03 15:55

  • 什么是RNN(循环神经网络)?RNN的基本原理和优缺点

    RNN(Recurrent Neural Network,循环神经网络)是一种专门用于处理序列数据的神经网络结构,它能够在序列的演进方向上进行递归,并通过所有节点(循环单元)的链式连接来捕捉序列中

    2024-07-04 11:48

  • 机器学习:随机梯度下降和批量梯度下降算法介绍

    随机梯度下降(Stochastic gradient descent) 批量梯度下降(Batch gradient descent) 梯度下降(GD)是最小化风险函数、损失函数的一种常用方法,随机

    2017-11-28 04:00

  • RNN以及LSTM

    循环神经网络(Recurrent Neural Network,RNN)是一种用于处理序列数据的神经网络。相比一般的神经网络来说,他能够处理序列变化的数据。比如某个单词的意思会因为上文提到的内容不同而有不同的含义,RNN就能够很好地解决这类问题。

    2022-03-15 10:44