立体匹配是计算机视觉的重要领域,通过给定一对经过校正的图像,计算对应像素之间的位移,即视差。
2023-05-16 09:05
双目立体匹配可划分为四个步骤:匹配代价计算、代价聚合、视差计算和视差优化。
2020-08-31 10:08
摘要:针对基于双目深度图的室外大规模地图构建计算冗长,而在无人系统的有限算力下,计算效率需求显著的情况,文中提出一种基于双目视觉立体匹配的三维地图构建方法。首先针对由立体匹配算法及原图引入的噪声误差
2022-08-10 11:38
事实上,有一些算法的流程比较混合——比如今天我将介绍的一个经典立体匹配算法,它总体来说是局部法的流程,但其中也有少量模块在进行视差优化的过程。
2022-09-07 15:40
根据Schrstein和Szeliski的总结,双目立体匹配可划分为四个步骤: 匹配代价计算、代价聚合、视差计算和视差优化 。 一 、匹配代价计算 匹配代价计算 的目的
2023-06-28 16:59
最近在做特征级别的感知结果融合算法。我的工作目的,是要将多种不同传感器的感知结果,通过一定的机制融合起来,得到融合后的感知结果。
2023-05-29 09:26
而下面左图是OpenCV的SGBM算法得到的视差图,右边则是通过我今天要介绍的算法处理后的视差图。看了它们后,我想你应该对什么叫做”化腐朽为神奇“有了深刻印象了吧。
2023-01-03 10:59
obj_points、img_points_left和img_points_right分别是存储每个标定图片对应的物理坐标系下的角点坐标、左相机的像素坐标和右相机的像素坐标。这些变量同样在后续的相机标定和立体匹配中用到。
2023-06-08 16:28
为什么选用边缘融合技术? 边缘融合的产生 边缘融合的应用来源于模拟
2010-02-21 17:03
我们都知道特征检测和匹配是计算机视觉领域中的重要任务,它们在许多应用中发挥着关键作用,比如SLAM、SFM、AR、VR等许多算法都需要稳定精确的特征检测和
2023-06-19 11:27