极限学习机(ELM)因其泛化能力好和学习速度快而成为软测量的新方法,但当应用到铝电解工艺参数建模时,ELM通常需要较多隐层节点并且泛化能力较低。针对这一问题,提出一种基于改进极
2017-12-05 14:44
当数据集中包含的训练信息不充分时,监督的极限学习机较难应用,因此将半监督学习应用到极限学习机,提出一种半监督
2017-12-23 11:24
正则化极限学习机RELM是一种单隐层前馈神经网络,不同于传统神经网络算法,RELM通过随机设置输入层权重和偏置值,可以快速求得输出层权重,并且引入正则化因子,能够提高模型的泛化能力。针对文本信息高
2017-11-30 16:58
基于粒子群与极限学习机的电能质量信号特征选择与识别_黄南天
2017-01-05 15:34
核多元基因选择和极限学习机在微阵列分析中的应用_杨勤
2017-03-19 19:07
基于低频唤醒和极限学习机的无线定位系统_张天承
2017-03-19 19:19
重点研究了极限学习机ELM对行为识别检测的效果。针对在线学习和行为分类上存在计算复杂性和时间消耗大的问题,提出了一种新的行为识别学习算法(ELM-Choleskv)。该
2017-11-17 14:49
Huang提出一种新型单隐层前馈神经网络极限学习机( Extreme Leaming Machine.ELM),通过核函数将数据从低维空间映射到高维空间中,处理非线性数据,但是参数随机产生使结果存在一定的随机性,因此容易产生较差的分类效果。1995年James K
2017-12-09 10:41
为了在复杂混沌噪声背景中快速准确提取有用信号,提出基于复杂非线性系统相空间重构理论,采用改进极限学习机(ELM)预测单步误差检测微弱信号的方法。采用改进K均值聚类算法选择最优族作训练集,改进极限
2018-01-16 11:35
摘要 针对人脸图片数量多、容易受噪声干扰,致使人脸识别的识别速度慢、准确率低的问题,提出一种基于 局部线性嵌入极限学习机的人脸识别方法———LLE-ELM算法。利用局部线性嵌入(LLE)算法
2023-07-20 15:14