机器翻译使用计算机将一种语言翻译成另一种语言,具有低成本、高效率和高翻译质量等优势,在语音翻译、同声传译自动化等许多领域得到广泛应用。 随着双语语料库的不断建设和完善,
2023-07-06 11:19
近日,阿里云人工智能平台 PAI 与华南理工大学朱金辉教授团队、达摩院自然语言处理团队合作在自然语言处理顶级会议 EMNLP2023 上发表基于机器翻译增加的跨语言机器阅读理解算法 X-STA。通过
2023-12-12 10:28
机器翻译之所以重要的原因是在于语言对人类的重要性,《圣经·创世记》有个故事,当时人类联合起来兴建希望塔顶通天能传扬己名的巴别塔。为了阻止人类的计划,上帝让人类说不同的语言,使人类相互之间不能沟通,计划因此失败,人类自此各散东西。
2018-03-29 16:24
然而之前的基于机器翻译的CCR工作大多忽略了这个问题,它们通常使用大规模的预训练模型在通过机器翻译得到的大规模多语言视觉-语言语料库上进行大规模预训练,并且只关注于视觉-目标语言数据对之间的对齐。
2022-10-14 14:59
这个说法与过去我们时常听到的言论形成了鲜明对比,原来我们总是说,至少在近期的未来,人工智能主要的作用还是增强,而不是直接取代人类的专业人员,Shoshan表示,近年来机器翻译的质量突飞猛进,多达50万人类翻译和21000个机构很快就会失业了。
2018-09-04 08:28
NMT的最初来自Kalchbrenner和Blunsom(2013)等人的提议。今天更为人所知的框架是从Sutskever等人提出的seq2seq框架。本文就将重点介绍seq2seq框架以及如何构建基于seq2seq框架的注意力机制。
2019-01-26 09:36
后者是文本处理模型一个重要的挑战,不同长度的句子会让问题更严重,这一点在计算机视觉领域是体会不到的,因为训练的图像通常大小相同。针对上面提到的两个问题,我们的解决方法是拖延同步点,将多个mini-batch的结果聚集起来再传播到各个处理单元中。这将训练时间减少到了7.5个小时,没有损失模型质量。
2018-09-24 09:40
输入张量让我们能够以索引序列的形式输入多个句子。这个方向是对的,但这些索引并没有保留什么信息。索引54代表的单词,和索引55代表的单词可能全无关系。基于这些索引数字进行计算没什么意义。这些索引需要以其他格式表示,让模型可以计算一些有意义的东西。一种更好的表示单词的方法是词嵌入。
2018-11-05 15:23
Facebook无监督机器翻译的方法,首先是让系统学习双语词典,将一个词与其他语言对应的多种翻译联系起来。举个例子,就好比让系统学会“Bug”在作为名词时,既有“虫子”、“计算机漏洞”,也有“窃听器”的意思。
2018-09-02 09:10
现实世界中很多文档都具有超链接的结构。例如,维基页面(普通网页)之间通过URL互相指向,学术论文之间通过引用互相指向。超文档的嵌入(embedding)可以辅助相关对象(如实体、论文)的分类、推荐、检索等问题。然而,针对普通文档的传统嵌入方法往往偏重建模文本/链接网络中的一个方面,若简单运用于超文档,会造成信息丢失。
2018-07-16 09:43