在机器学习中,有许多方法来构建产品或解决方案,每种方法都假设不同的东西。很多时候,如何识别哪些假设是合理的并不明显。刚接触机器学习的人会犯错误,事后想想,这些错误往往会
2019-11-13 17:44
用强化学习方法教机器人(模拟器里的智能体),能学会的动作花样繁多,细致到拿东西、豪放到奔跑都能搞定,还可以给机器人设置一个明确的目的。但是,总难免上演一些羞耻或惊喜play。
2018-04-13 11:00
算法永远是一段代码的灵魂,面对海量的机器学习算法,萌新最爱问的是,“我该选什么算法?”
2018-03-29 14:10
为了更清楚地理解机器学习的过程,我们将以开发能够识别手写数字的机器为具体例子来考虑模式识别的问题。这样的机器应该能够准确
2019-01-12 10:05
随着大数据时代的到来,机器学习成为解决问题的一种重要且关键的工具。不管是工业界还是学术界,机器学习都是一个炙手可热的方向,但是学术界和工 业界对
2018-05-18 13:13
学习机器学习有很多方法,大多数人选择从理论开始。 如果你是个程序员,那么你已经掌握了把问题拆分成相应组成部分及设计小项目原型的能力,这些能力能帮助你学习新的技术、类库和方法。这些对任何一个职业程序员来说都是重要的能力
2018-07-05 08:34
机器学习入门方法 一说到机器学习,我被问得最多的问题是:给那些开始学习机器学习
2018-05-20 07:10
虽然机器学习算法是人工智能的一个应用,但并非所有人工智能系统都被视为机器学习的示例。
2020-02-08 17:23
深度学习与传统的机器学习最主要的区别在于随着数据规模的增加其性能也不断增长。当数据很少时,深度学习算法的性能并不好。这是因为深度
2017-10-27 16:50
异常值有时候很重要,有时候又可以忽略不计,视情况而定。以收入预测为例,有时候收入会突然出现很大的变动,观察这种现象并了解其原因是很有帮助的。有时候异常值由某种误差造成,那么这时可以放心地忽略它们,并将其从你的数据中删除。
2017-10-18 14:21