各种机器学习的应用场景分别是什么?例如,k近邻,贝叶斯,决策树,svm,逻辑斯蒂回归和最大熵模型
2019-09-10 10:53
方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第3 部分(第11~16 章)为进阶知识,内容涉及特征选择与稀疏学习、计算
2017-06-01 15:49
我想在 STM 板上使用机器学习算法对通过工业传感器获取的气体传感器数据进行分类。知道哪种 STM32 变体最适合此应用
2023-01-10 07:10
人工智能下面有哪些机器学习分支?如何用卷积神经网络(CNN)方法去解决机器学习监督学习下面的
2021-06-16 08:09
本帖最后由 1413909 于 2017-7-20 22:37 编辑 在机器学习中,分类器是一个很重要的内容,性能好的分类
2017-07-20 22:26
微控制器和单板计算机等受限设备上的机器学习)的出现,机器学习已经与所有类型的工程师相关,包括那些从事嵌入式应用的工程师。
2022-06-21 11:06
本书将机器学习看成一个整体,不管于基于频率的方法还是贝叶斯方法,不管是回归模型还是分类模型,都只是一个问题的不同侧面。作者能够开启上帝视角,将机器
2019-03-18 08:30
通常,当开发人员谈论机器学习(ML)时,他们指的是神经网络(nn)。 神经网络的巨大优势在于,你不需要成为一个领域专家,而且可以迅速找到一个可行的解决方案。神经网络的缺点是它们通常需要无数的记忆
2023-08-02 07:12
,词性的解析,分类,语义解释,概率分析还有评估。2.scikit-learnPython社区里面机器学习模块sklearn,内置了很多算法,几乎实现了所有基本机器
2018-05-10 15:20
上课时间安排:2022年05月27日 — 2022年05月30日No.1 第一天一、机器学习简介与经典机器学习算法介绍什么是机器
2022-04-28 18:56