机器学习(Machine Learning)本质上就是让计算机自己在数据中学习规律,并根据所得到的规律对未来数据进行预测。
2022-10-27 15:12
噪声尽管是工程中最常见的现象和问题,但其物理本质却是极其精深的。拿最简单的一个电阻来说,不要接任何外加电源,噪声始终是存在的。
2022-11-11 09:34
在传统的多智体学习过程当中,有研究者在对其他智能体建模 (也即“对手建模”, opponent modeling) 时使用了递归推理,但由于算法复杂和计算力所限,目前还尚未有人在多智体深度强化学习 (Multi-Ag
2019-03-05 08:52
学习是人类认知的核心属性,是人工智能长期追求的目标。我们正处于在人类和人工智能领域产生出新见解的临界点,这些见解将通过明确地将人类认知、人类神经科学和机器学习的进步联系起来而更快地显现出来。
2019-02-04 11:43
为了更清楚地理解机器学习的过程,我们将以开发能够识别手写数字的机器为具体例子来考虑模式识别的问题。这样的机器应该能够准确识别一个字符所代表的数字,而无论它的书写格式如何变化。
2019-01-12 10:05
上面收的引入知识库+KNN的方法,缓解了模型参数需要强记忆训练样本的问题。此外,文中还通过KNN检索结果来指导模型的学习过程。
2022-10-09 17:33
迁移学习(Transfer Learning)是机器学习领域中的一个重要概念,其核心思想是利用在一个任务或领域中学到的知识来加速或改进另一个相关任务或领域的学习过程。这
2024-07-04 17:30
“Cloud AutoML 产品设计让机器学习的过程变得更简单,让即便没有机器学习经验的人也可以享受机器学习带来的益处。尽管AutoML有很大的进步,这仍是一项相对初期
2018-09-24 08:44
深度学习模型训练是一个复杂且关键的过程,它涉及大量的数据、计算资源和精心设计的算法。训练一个深度学习模型,本质上是通过优化算法调整模型参数,使模型能够更好地拟合数据,提高预测或分类的准确性。本文将
2024-07-01 16:13
随着人工智能技术的飞速发展,自动驾驶技术作为其中的重要分支,正逐渐走向成熟。在自动驾驶系统中,深度学习技术发挥着至关重要的作用。它通过模拟人脑的学习过程,实现对车辆周围环境的感知、理解和决策。本文将深入探讨深度
2024-07-01 11:40