机器学习算法是数据挖掘、数据能力分析和数学建模必不可少的一部分,而随机森林算法和决策树算法是其中较为常用的两种算法,本文
2023-09-21 11:17
随机森林是一种灵活且易于使用的机器学习算法,即便没有超参数调优,也可以在大多数情况下得到很好的结果。它也是最常用的算法之一,因为它很简易,既可用于分类也能用于回归任务。 在这篇文章中,你将了解到随机
2018-03-14 16:10
深度森林的最新应用~
2018-05-28 08:58
K-Means是十大经典数据挖掘算法之一。K-Means和KNN(K邻近)看上去都是K打头,但却是不同种类的
2018-07-05 14:18
KNN属于一种监督学习的分类算法,用于训练的数据集是完全正确且已分好类的。
2022-11-11 10:11
本次主题是随机森林,杰里米(讲师)提供了一些基本信息以及使用Jupyter Notebook的提示和技巧。 Jeremy谈到的一些重要的事情是,数据科学并不等同于软件工程。 在数据科学中,我们做
2020-09-29 15:34
森林防火远程广播 ,更好守护森林生态****环境 频发的怎林火灾为再次敲响了森林消防的警钟,今天我们就来聊一聊森林防火系统, 农村焚烧秸秆,引起的交通事故,
2023-06-27 09:07
其实从直观角度来解释,每棵决策树都是一个分类器(假设现在针对的是分类问题),那么对于一个输入样本,N棵树会有N个分类结果。而随机森林集成了所有的分类投票结果,将投票次数最多的类别指定为最终的输出,这就是一种最简单的 Bagging 思想。
2023-05-15 09:46
随机森林是一种监督式算法,使用由众多决策树组成的一种集成学习方法,输出是对问题最佳答案的共识。随机森林可用于分类或回归。
2022-08-05 10:00
K-means 算法是典型的基于距离的聚类算法,采用距离作为相似性的评价指标,两个对象的距离越近,其相似度就越大。而簇是由距离靠近的对象组成的,因此
2022-07-18 09:19