显著成就后,也逐渐被引入到文本分类任务中。卷积神经网络通过模拟人类视觉系统的信息处理方式,能够有效地提取文本中的局部特征,进而实现高精度的文本分类。本文将对卷积神经网络
2024-07-01 16:25
文本分类是 NLP 中最常见的任务之一, 它可用于广泛的应用或者开发成程序,例如将用户反馈文本标记为某种类别,或者根据客户文本语言自动归类。另外向我们平时见到的邮件垃圾过滤器也是
2022-03-22 10:49
在本文中,我们全面探讨了文本分类技术的发展历程、基本原理、关键技术、深度学习的应用,以及从RNN到Transformer的技术演进。文章详细介绍了各种模型的原理和实战应用,旨在提供对文本分类技术深入理解的全面视角。
2023-12-16 11:37
文本分类看似简单,但实则里面有好多门道。作者水平有限,只能将平时用到的方法和trick在此做个记录和分享,并且尽可能提供给出简洁、清晰的代码实现。希望各位看官都能有所收获。
2022-10-11 09:47
另一种常见的文本分类是情感分析(sentiment analysis),其目的是识别文本内容的极性(polarity):它所表达的观点的类型。这可以采用二进制的“喜欢/不喜欢”来评级,或者使用更精
2018-07-26 10:02
而多类别分类指的是y的可能取值大于2,但是y所属类别是唯一的。它与多标签分类问题是有严格区别的。所有的scikit-learn分类器都是默认支持多类别分类的。但是,当你
2017-12-27 08:36
ACL2017 年中,腾讯 AI-lab 提出了DPCNN,论文中提出了一种基于 word-level 级别的网络-DPCNN,由于 TextCNN 不能通过卷积获得文本的长距离依赖关系......
2019-02-13 14:59
朴素贝叶斯( NB )是一种简单但功能强大的概率分类技术,具有良好的并行性,可以扩展到大规模数据集。
2022-10-10 14:50
Static vs. Non-static Representations: 在大部分的语料上,CNN-non-static都优于CNN-static,一个解释:预训练词向量可能认为‘good’和‘bad’类似(可能它们有许多类似的上下文),但是对于情感分析任务,good和bad应该要有明显的区分,如果使用CNN-static就无法做调整了;
2018-07-17 17:03
我们可以把上述的其他信息也引入作为特征参数,这样就能构建出一个更全面的模型来预测葡萄酒质量。为了将文字描述与其他特征结合起来进行预测,我们可以创建一个集成学模型(文本分类器就是集成在内的一部分);也可以创建一个层级模型,在层级模型中,
2019-05-16 18:27