• 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
返回

电子发烧友 电子发烧友

  • 全文搜索
    • 全文搜索
    • 标题搜索
  • 全部时间
    • 全部时间
    • 1小时内
    • 1天内
    • 1周内
    • 1个月内
  • 默认排序
    • 默认排序
    • 按时间排序
大家还在搜
  • 数据挖掘算法:决策树算法如何学习及分裂剪枝

    决策树(decision tree)算法基于特征属性进行分类,其主要的优点:模型具有可读性,计算量小,分类速度快。决策树算法包括了由Quinlan提出的ID3与

    2018-07-21 10:13

  • 什么是决策树?决策树算法思考总结

    C4.5算法:基于ID3算法的改进,主要包括:使用信息增益率替换了信息增益下降度作为属性选择的标准;在决策树构造的同时进行剪枝操作;避免了的过度拟合情况;可以对不完整属性和连续型数据进行处理,提升了算法的普适性。

    2019-02-04 09:45

  • 什么是决策树模型,决策树模型的绘制方法

    决策树是一种解决分类问题的算法,本文将介绍什么是决策树模型,常见的用途,以及如何使用“亿图图示”软件绘制决策树模型。

    2021-02-18 10:12

  • 大数据—决策树

    大数据————决策树(decision tree) 决策树(decision tree):是一种基本的分类与回归方法,主要讨论分类

    2022-10-20 10:01

  • 人工智能之机器学习C4.5算法解析

    C4.5算法是由Quinlan提出并开发的用于产生决策树[参见人工智能(23)]的算法。该算法是对Quinlan之前开发的ID3算法的一个扩展。C4.5算法产生的决策树

    2018-09-05 10:33

  • 决策树的原理和决策树构建的准备工作,机器学习决策树的原理

    希望通过所给的训练数据学习一个贷款申请的决策树,用于对未来的贷款申请进行分类,即当新的客户提出贷款申请时,根据申请人的特征利用决策树决定是否批准贷款申请。

    2018-10-08 14:26

  • 人工智能C4.5算法的概念和优点

    C4.5算法与ID3算法一样使用了信息熵的概念,并和ID3一样通过学习数据来建立决策树。ID3算法使用的是信息熵的变化值,而C4.5算法使用的是信息增益率。在决策树构造

    2018-06-28 07:32

  • 决策树的构成要素及算法

    决策树是一种解决分类问题的算法,决策树算法采用树形结构,使用层层推理来实现最终的分类

    2020-08-27 09:52

  • 决策树的结构/优缺点/生成

    决策树(DecisionTree)是机器学习中一种常见的算法,它的思想非常朴素,就像我们平时利用选择做决策的过程。决策树是一种基本的分类与回归方法,当被用于

    2021-03-04 10:11

  • 机器学习:决策树--python

    今天,我们介绍机器学习里比较常用的一种分类算法,决策树决策树是对人类认知识别的一种模拟,给你一堆看似杂乱无章的数据,如何用尽可能少的特征,对这些数据进行有效的分类

    2017-11-16 01:50