生成对抗网络(Generative Adversarial Networks,GANs)是一种由蒙特利尔大学的Ian Goodfellow等人在2014年提出的深度学习算法
2024-07-09 11:34
生成对抗网络由一个生成网络(Generator)与一个判别
2018-06-11 16:04
为了进一步提升深度图像压缩的质量,开发超越PSNR和MS-SSIM的新指标非常重要。其中重点关注的是对抗损失,最近的成果表明它能捕捉到全局的语义信息和局部纹理,产生强大的生成
2018-04-17 16:28
为了让生成对抗网络更易于实验,谷歌开发者开源了一个轻量级的库——TFGAN,它可以让GAN的训练和评估过程更容易。
2017-12-22 14:49
的比例尽可能高。而生成对抗网络(GAN)由一个生成网络与一个判别
2018-05-17 09:59
条件GANs已经应用与多种跟图像有关的任务中了,但分辨率通常都不高,并且看起来很不真实。而在这篇论文中,英伟达和加州大学伯克利分校的研究人员共同提出了一个新方法合成高分辨率的街景,利用
2018-01-11 16:22
图2显示了我们提出的网络的总体架构。根据生成对抗网络的思想,Attentive GAN有两个主要部分:生成网络和判别
2018-06-25 11:39
大家都知道,自从生成式对抗网络(GAN)出现以来,便在图像处理方面有着广泛的应用。但还是有很多人对于GAN不是很了解,担心由于没有数学知识底蕴而学不会GAN。
2018-05-14 08:29
那么你的角色是什么呢?轻微调整游戏规则(网络的超参数),成为了美术馆馆长(curator)。作为馆长你要从GAN的输出中进行挑选,因为GAN会生成很多不同结构、颜色的组合,与其训练的样本图片有各种不同的差异。所以作为馆长也不容易,有时你会觉得很多
2018-09-17 08:56
一方面,如果判别网络能力太差,胡乱分辨真假,甚至把真的误认为假的,假的误认为真的,那生成网络就会很不稳定,会努力学习让生成
2018-05-15 18:22