因为多传感器的使用会产生大量需要处理的数据,因此通常通过融合算法来对数据进行优化。不同传感器采集到的信息可能相互之间可能会不同甚至是有矛盾,使用融合算法可以帮我们弄懂如何保证系统能够准确处理这些数据,使系统最终做出及
2022-03-30 16:29
本文开始介绍了聚类算法概念,其次阐述了聚类算法的分类,最后详细介绍了聚类算法
2018-04-26 10:56
与分类不同,分类是示例式学习,要求分类前明确各个类别,并断言每个元素映射到一个类别,而聚类是观察式学习,在聚类前可以不知道类别甚至不给定类别数量,是无监督学习的一种。目前聚类广泛应用于统计学、生物学、数据库技术和市场
2018-02-12 16:42
有许多聚类算法可供选择,对于所有情况,没有单一的最佳聚类算法。相反,最好探索一系列聚类
2023-05-22 09:13
本文从建立伪量测方程的角度,提出了一种异质多传感器的异步量测融合算法,该算法是通过在融合中心建立伪量测方程使各传感器的数据同步,然后利用同步的思想进行处理,最后通过计算
2019-04-30 14:25
无监督学习是机器学习技术中的一类,用于发现数据中的模式。本文介绍用Python进行无监督学习的几种聚类算法,包括K-Means聚类、分层聚类、t-SNE
2018-05-27 09:59
分享一篇关于聚类的文章:10种聚类算法和Python代码。
2023-01-07 09:33
K-means 算法是典型的基于距离的聚类算法,采用距离作为相似性的评价指标,两个对象的距离越近,其相似度就越大。而簇是由距离靠近的对象组成的,因此算法目的是得到紧凑并
2022-07-18 09:19
多传感器信息融合方法大致可以分为三类,即,概率统计方法、逻辑推理方法和学习方法。使用模糊推理、D-S证据理论和产生式规则的方法进行信息融合,这些方法都属于逻辑推理的范畴;使用神经网络的方法进行信息
2020-01-27 16:16
近年来,多传感器融合算法发展迅猛,不同传感器可以相互补充,通过融合提高系统的感知能力。但受限于标定成本和时间同步问题,多传感器数据集却不多。
2022-09-29 14:53