摘要:针对常规特征提取方法存在着问题不足,提出了基于BP神经网络和基于互信息熵的特征提取方法,并通过特征提取实例加以说明。结果表明这两种方法是可行和有效的。
2006-03-11 13:14
特征提取是计算机视觉中的一个重要主题。不论是SLAM、SFM、三维重建等重要应用的底层都是建立在特征点跨图像可靠地提取和匹配之上。
2022-07-11 10:28
互信息是出了名的难计算,特别是在连续和高维设置中。幸运的是,在神经估计的最新进展中,已经能够有效计算深度神经网络的高维输入/输出对之间的互信息。而在本项研究中,研究人员
2018-09-11 16:51
机器学习中特征选择和特征提取区别 demi 在 周四, 06/11/2020 - 16:08 提交 1. 特征提取 V.S 特征选择
2020-09-14 16:23
计算机视觉的特征提取算法研究至关重要。在一些算法中,一个高复杂度特征的提取可能能够解决问题(进行目标检测等目的),但这将以处理更多数据,需要更高的处理效果为代价。而颜色
2017-11-16 14:12
机器学习技术已被广泛接受,并且很适合此类分类问题。基于卷积神经网络的双重特征提取方法。提出的模型使用Radon拉冬变换进行第一次特征提取,然后将此特征输入卷积层进行第二次特征提
2023-10-16 11:30
人脸检测是一个非常复杂的模式,人脸面部特征提取及识别成为当前计算机图像处理相关学科的一个极具挑战的课题。而基于Carvelet变换的人脸特征提取及识别的意义在于Curvelet继承了小波分析优良
2017-11-30 15:09
, 而特征提取作为降维的一种重要方法,具有降维速度快等优点。 因此,特征提取对高光谱图像的利用有重要意义。
2022-09-26 13:53
本文主要阐述了语音识别算法及语音识别特征提取方法。
2020-04-01 09:24
基于并行附加特征提取网络的SSD地面小目标检测模型 来源:《电子学报》 ,作者李宝奇等 摘 要: 针对SSD原始附加特征提取网络(Original Additional Feature
2022-02-17 16:41