互信息是出了名的难计算,特别是在连续和高维设置中。幸运的是,在神经估计的最新进展中,已经能够有效计算深度神经网络的高维输入/输出对之间的互信息。而在本项研究中,研究人员
2018-09-11 16:51
计算机视觉的特征提取算法研究至关重要。在一些算法中,一个高复杂度特征的提取可能能够解决问题(进行目标检测等目的),但这将以处理更多数据,需要更高的处理效果为代价。而颜色
2017-11-16 14:12
方向梯度直方图(Histogram of Oriented Gradient, HOG) 特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。HOG
2017-12-10 13:45
有预期工作条件下按规范运行。但由于特征化数据的复杂性和数量,传统的库特征提取和验证在计算和工程工作量方面的成本变得越来越高昂。
2024-12-26 11:15
区域和轮廓只包含对分割结果的原始描述,在实际应用中我们还需要从区域或轮廓中确定一个或多个特征量。这些确定的特征量被称为特征。
2023-10-23 14:12
方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过
2018-01-22 16:30
InfoGAN是生成对抗网络信息理论的扩展,能够以完全非监督的方式得到可分解的特征表示。它可以最大化隐含(latent)变量子集与观测值之间的互信息(mutual information),并且发现了有效
2018-07-20 09:59
自然语言处理(Natural Language Processing,NLP)是人工智能的子领域之一,其重点是使计算机能够理解和处理人类语言。在本文中,我们将知晓NLP是如何工作的,并学习如何使用Python编写能够从原始文本提取信息的程序。(注:作者在文中选择的
2018-08-13 10:02
介绍 以往的特征检测和匹配算法侧重于提取大量冗余的局部可靠特征,这样会导致效率和准确性有限,特别是在大规模环境中挑战性的场景,比如天气变化、季节变化、光照变化等等。 本文将高级语义
2023-06-30 10:49
LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显著的优点。它是首先由T. Ojala, M.Pietikäinen, 和 D. Harwood 在1994年提出,用于纹理特征提取
2018-01-30 10:49