• 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
返回

电子发烧友 电子发烧友

  • 全文搜索
    • 全文搜索
    • 标题搜索
  • 全部时间
    • 全部时间
    • 1小时内
    • 1天内
    • 1周内
    • 1个月内
  • 默认排序
    • 默认排序
    • 按时间排序
大家还在搜
  • 示波器垂直位数分辨率介绍和应用

    自1991以来,英国比克科技一直在PC示波器的发展上起着先锋作用。这些紧凑的示波器,与传统全尺寸的数字存储示波器一样(DSO),已经在市面上得到大量使用。所有这些数字存储示波器背后的驱动力一直是数字电子。随着数字电路时钟速度的增加,示波器制造商通过设计更快采样率和更高带宽的示波器来应对数字电路的挑战。不幸的是,这些不能满足模拟电路设计师的要求:追求更高速度一直是以牺牲动态性能和分辨率为代价的。一、什么是数字示波器(DSO)的精度?示波器的精度取决于它的分辨率。以下是一些可用分辨率的特点:示波器分辨率步进量能检测的最小变量理想的动态范围6位641.6% (16000ppm)36dB8位2560.39% (4000ppm)48dB12位40960.024% (244ppm)72dB16位655360.0015% (15ppm)96dB对大多数示波器而言,精度的重要性往往被忽视,工程师可以在百分之几的误差内进行测量(大多数数字示波器DSO一般为3%~5%直流精度),如需要准确测量,需要使用万用表。然而,使用精密示波器进行高速准确测量变为可能。大多数手持万用表具有12位分辨率(相当于3½位,例如BM805),而16位示波器等效分辨率为4½位台式万用表(例如ODM5514)。除了分辨率和准确性外,噪音也是一个问题。传统示波器前端放大器的设计为高带宽,但是没有考虑低噪声的问题。16位示波器的设计者面对更艰巨的工作,因为仅0.0015%的噪声就足以掩盖其测量信号。比克科技拥有超过20年的经验,不像一些竞争者的设计,仅仅提供可替代的8位ADC示波器,而Picoscopes设计彻底实现低噪声和低失真。海洋仪器提供的12位或16位示波器(例如4262智能动态信号分析仪或高分辨率示波器)具有超强的分辨率,显著改善了直流精度、动态范围和信号噪声比。二、应用1:低成本信号发生器下面分别描述典型的8位、12位和16位不同PicoScope示波器的时域和频域显示。信号源是在一个Android智能手机上运行的FuncGen程序,产生了一个250Hz正弦波,最大幅度为170mV。1、使用8位示波器一台8位PicoScope示波器(例如2206B型)给出了一个足够好的视觉来显示波形,如图1所示。该波的频率和振幅,可以合理的精度测量。但是,放大64倍后(图2)显示了8位分辨率的限制。图3显示了信号的频谱分析图(FFT)。在250Hz的峰值是输入信号的基本频率,无杂散动态范围(SFDR)表现为标尺间的△值,约为68dB。底噪掩盖了输入信号的真实特性。2、使用12位示波器以上同一信号由一台12位PicoScope示波器(例如4424型)捕获,在正常范围视图中看起来相同,如图4所示。放大64倍后(图5)没有显示出数字化台阶,但是由于具有12位分辨率,我们可以看到8位示波器所看不见的噪声。图6显示了信号的频谱分析图(FFT),无杂散动态范围(SFDR)约为72dB,并且可以看见在二次上的失真峰值(500Hz)和三次谐波(750Hz)。 3、使用16位示波器使用16位PicoScope示波器(例如4262型),放大64倍后的波形比较清晰,当然,信号源上的噪声仍然可见(图8中插入的图片显示了加入10kHz数字滤波器到PicoScope后的效果)。频谱显示与12位示波器一样,得到相同的谐波杂散和SFDR,表明失真是信号源引起的,而非示波器产生。此时示波器的FFT频谱分析仪功能设置上文使用的频谱分析器视图,尽可能地使用以下设置:•频率范围:0~1kHz;•频谱框:≥8k;•显示模式:平均;•FFT加窗模式:Blackman-Harris窗。三、应用2:低失真信号发生器在该测试中,我们使用用PicoScope4262型示波器/音频分析仪内置得低失真信号发生器取代低成本的信号发生器。这样,我们能够测试显示在PicoScope4262前端具有具有非常低的失真所带来的好处。该发生器设置为10kHz正弦波,其幅度为990mV。1、使用8位示波器正如前面的测试,8位示波器可足够查看波形的整体形状(图10),但在64倍放大后,其显示就有了局限性(图11)。FFT频谱分析图(图12)显示了10KHz基波。如果信号中有其它成分,它们被底噪淹没,约低于70dB峰值。2、使用12位示波器同一信号由一台12位PicoScope示波器(例如4424型)捕获,在正常范围视图中看起来相同,如图13所示。放大64倍后(图14),看上去比8位示波器更清晰,视觉上具有非常小的噪声和数字化台阶。在频谱视图中(图15),本底噪声现在低到足以显示一些谐波和其它杂散信号,达到约76dB低于10KHz峰值。在这个阶段,我们不知道它们否是由示波器还是信号发生器导致。3、使用16-位示波器使用16位PicoScope4262示波器,放大64倍后的波形平滑且无噪声,没有数字化导致的失真信号。频谱曲线显示约96dB的动态范围(SFDR),比12位示波器具有更低的本底噪声。失真峰值是20dB,低于12位示波器,表明在以前的测试中所看到的大多数失真是12位示波器的局限所导致的,而不是信号发生器。此时示波器的FFT频谱分析仪功能设置上文使用的频谱分析器视图,尽可能地使用以下设置:•频率范围:0~50kHz;•频谱框:≥8k;•显示模式:平均;•FFT加窗模式:Blackman–Harris窗。不管哪种示波器,应把FFT本底噪声放到感兴趣信号的下面,选择合适的频谱框数量。示波器使用方法:http://www.hyxyyq.com

    2017-08-18 10:02

  • 如何计算存储示波器的垂直分辨率?

    存储示波器的垂直分辨率是指示波器能够分辨的最小电压变化量,它反映了示波器对信号幅度细节的测量能力,通常用位数(bit)来表示,也可通过相关公式换算为具体的电压值。以下为你详细介绍其计算方法:了解关键

    2025-05-30 14:03

  • 示波器的垂直分辨率相关知识分享

    为了提高垂直精度,使测量结果更准确。 通过改变算法来提高分辨率数字示波器中ADC的位数越高,垂直分辨率越高,该分辨率由硬件决定,一旦确定无法改变。但示波器整个系统的有效位数

    2019-12-16 11:38

  • 普源示波器的垂直分辨率有多重要

    示波器的垂直分辨率指的是模数转换器的垂直分辨率,用来衡量示波器将输入电压转化为数字值的精确程度,通常用A/D的位数来表示。

    2022-11-01 15:09

  • 为什么AD位数越高越好AD位数是如何影响信号幅值的

    数据采集设备一个重要的指标就是AD位数,我们都知道AD位数越高越好。但这个“好”到底体现在哪些方面呢?AD位数到底对数据采集有哪些影响呢?

    2019-02-03 08:29

  • 垂直单极天线讨论

    讨论了自由空间中的天线,但实际中的单极天线通常是相对于地面垂直地架设的。   ​   图1 λ/2偶极天线与λ/4地网平衡系统,“缺失”的λ/4由良好(就是高传导率)地面镜像来提供。   这样的天线

    2023-05-15 17:17

  • 基于Verilog的垂直投影实现

    `基于Verilog的垂直投影实现微信公众号:FPGA自习室一、概述投影,在立体几何中我们学到过,是空间直线在某个方向上的投影,那么图像处理中也是这种投影思想。最简单的投影:水平方向投影,将图像数组

    2019-03-03 17:51

  • 垂直振荡器怎么使用?

    将电源线插头插入振荡器对应的插孔内,然后将插头插入电源插座中,此时,电源接通,如需要水平振荡则打开水平振荡开关;如需要垂直振荡则打开垂直振荡开关。振荡速度可根据您的要求调整速度旋钮。

    2019-10-14 09:11

  • AD位数是如何影响信号幅值的?

    数据采集设备一个重要的指标就是AD位数,我们都知道AD位数越高越好。但这个“好”到底体现在哪些方面呢?AD位数到底对数据采集有哪些影响呢? AD位数的实质是指模数转换数

    2021-01-20 14:45

  • 12864垂直卷动

    带字库的12864垂直卷动时为什么分成了两屏

    2013-04-25 08:59