图卷积神经网络
2019-08-20 12:05
下面就让我们来深入了解一下什么是图卷积网络,以及它在行为识别领域的最新工作进展吧!
2019-06-10 14:07
针对提取图表征用于图分类过程中的结构信息提取过程的问题,提出了一种图卷积神经网络与胶囊网络融合的图分类模型。首先,利用图卷积神经网络处理图中的节点信息,迭代以后得到节点表征,表征中蕴含着该节点的子树
2021-05-07 15:17
为了避免上述问题,来自中科院自动化所、北京中医药大学的研究者们提出一个执行图像语义分割任务的图模型 Graph-FCN,该模型由全卷积网络(FCN)进行初始化。
2020-05-13 15:21
Networks,HIN)的有效方法受到越来越多的关注。基于随机游走的方法是目前网络表示学常用的方法,然而这些方法大多基于浅层神经网络,难以捕获异质网络结构信息。图卷积神经网络( Gragh
2021-05-18 16:49
深度学习一直都是被几大经典模型给统治着,如CNN、RNN等等,它们无论再CV还是NLP领域都取得了优异的效果,那这个GCN是怎么跑出来的?是因为我们发现了很多CNN、RNN无法解决或者效果不好的问题——图结构的数据。
2020-04-17 10:14
有关这个领域的研究才刚刚起步。在过去的几个月中,该领域已经获得了振奋人心的发展,但是迄今为止,我们可能只是抓住了这些模型的表象。而神经网络如何在图论上针对特定类型的问题进行研究,如在定向图或关系图上进行学习,以及如何使用学习的图嵌入来完成下一步的任务等问题,还有待进一步探索。本文涉及的内容绝非详尽无遗的,而我希望在不久的将来会有更多有趣的应用和扩展。
2017-12-14 20:08
(例如稀疏性),所以一些关键的语义信息(如物体形状)不能被很好的捕捉到。本文提出了一种基于层级图网络(HGNet)的 图卷积 (GConv),可以直接将点云作为输入来预测 3D 的边界框。形状注意图卷积
2021-06-21 12:15
由于大多数现有的点云对象检测方法不能充分适应点云的特征(例如稀疏性),所以一些关键的语义信息(如物体形状)不能被很好的捕捉到。本文提出了一种基于层级图网络(HGNet)的图卷积(GConv),可以直接将点云作为输入来预测 3D 的边界框。
2020-12-24 15:25
针对现有图匹配算法对拓扑结构节点特征挖掘不够充分问题,提出了一种用于非精确图匹配的改进图卷积神径网络(GCN)模型。首先,考虑到选取的节点应具有较强的代表性,利用社交网络分析中三种衡量网络节点中心度
2021-04-11 10:47