掌握机器学习算法并不是什么神话。对于大多数机器学习初学者来说,回归算法是很多人接触到的第一类算法,它易于理解、方便使用,堪称学习工作中的一大神器,但它真的是万能的吗?
2018-05-16 17:01
Logistic回归目的是从特征学习出一个0/1分类模型,而这个模型是将特性的线性组合作为自变量,由于自变量的取值范围是负无穷到正无穷。因此,使用logistic函数(或称作sigmoid函数)将自变量映射到(0,1)上,映射后的值被认为是属于y=1的概率。
2017-12-14 14:31
SVM可以做线性分类、非线性分类、线性回归等,相比逻辑回归、线性回归、决策树等模型。
2017-11-30 10:59
支持向量机(SVM),一个神秘而众知的名字,在其出来就受到了莫大的追捧,号称最优秀的分类算法之一,以其简单的理论构造了复杂的算法,又以其简单的用法实现了复杂的问题,不得不说确实完美。
2018-04-30 17:49
机器学习作为人工智能的一个重要分支,其目标是通过让计算机自动从数据中学习并改进其性能,而无需进行明确的编程。本文将深入解读几种常见的机器学习算法原理,包括线性回归、逻辑回归、支持向量机(SVM)、决策树和K近邻(KN
2024-07-02 11:25
支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一 种监督式学习的方法,它广泛的应用于统计分类以及回归分析中。
2020-01-28 16:01
支持向量机(Support Vector Machine: SVM)是一种非常有用的监督式机器学习算法
2018-04-02 08:52
支持向量机(Support Vector Machine: SVM)是一种非常有用的监督式机器学习算法
2018-04-02 08:49
SVM与Fourier算法在电网短期负荷预测中的应用 本文将Fourier(傅立叶)算法与SVM(支持向量机)共同引入电网短期负荷预测。对于波动性较大的负荷,Four
2009-07-11 18:46
支持向量机结合了感知机和logistic回归分类思想,假设训练样本点(xi,yi)到超平面H的几何间隔为γ(γ>0),由上节定义可知,几何间隔是点到超平面最短的距离,如下图的红色直线:
2018-11-23 08:58