在人工智能的广阔领域中,知识图谱与大模型是两个至关重要的概念,它们各自拥有独特的优势和应用场景,同时又相互补充,共同推动着人工智能技术的发展。本文将从定义、特点、应用及相互关系等方面深入探讨知识图谱与大模型之间的关系。
2024-07-10 11:39
本文需要进一步研究知识图谱的数据存储。由于知识图谱的图结构特点,使用传统的关系型数据库存储大量的关系表,在做查询的时候需要大量的表连接,速度非常慢,所以往往知识图谱采用的是图数据库。
2018-09-23 10:21
第一个部分介绍我们为什么需要知识图谱、知识图谱的相关概念及其形式化表示;第二个部分将详细介绍语义网络、语义网和链接数据等概念;最后,将结合实例对RDF和RDFS/OWL,这两种知识图谱基础技术作进一步的介绍。
2018-07-28 09:55
传统的推荐系统容易出现稀疏性和冷启动的问题,而知识图谱作为一种新兴类型的辅助信息,近几年逐渐引起了研究人员的关注,本文将向大家介绍知识图谱的相关知识以及知识图谱在推荐系统中可能的应用价值。
2018-06-06 14:33
知识图谱是实现机器认知智能的基础。机器认知智能的两个核心能力:“理解”和“解释”,均与知识图谱有着密切关系。首先需要给机器“理解与解释”提出一种解释。我认为机器理解数据的本质是建立起从数据到知识库中的知识要素(包括实体、概念和关系)映射的一个过程。
2018-10-29 10:03
知识图谱构建是使用各种技术从无到有构造知识图谱,而知识图谱精化是使用各种技术对知识图谱进行完善。可见,要构建一个完美的知识图谱
2018-09-23 09:46
作为人工智能时代最重要的知识表示方式之一,知识图谱能够打破不同场景下的数据隔离,为搜索、推荐、问答、解释与决策等应用提供基础支撑。
2018-12-17 15:08
知识图谱本质上是一种语义网络,但是它最主要的特点是一个非常大规模的语义网络,之前的语义网络受限于我们处理的方法,更多是依赖于专家的经验规则去构建,在规模方面受限于特定领域的数据。大规模网络,谷歌在2012年首先提出知识图谱的概念,在freebase的基础上扩展了大
2018-09-10 09:53
知识图谱(Knowledge Graph)以结构化的形式描述客观世界中概念、实体及其关系。是融合了认知计算、知识表示与推理、信息检索与抽取、自然语言处理、Web技术、机器学习与大数据挖掘等等方向的交叉学科。人工智能是以传统符号派与目前流行的深度神经网路为主,如下图所示,知识
2024-01-08 10:57
人类细胞图谱计划(Human Cell Atlas,HCA)旨在描述人体中每个细胞(约37万亿个)的详细特征,呈现不同类型细胞在人体组织的三维结构,勾勒他们在人体系统内的联系,揭示图谱变化与健康
2023-07-23 15:02